x^3+(2a+1)x^2+(a^2+2a-1)x(a^2-1)=

Simple and best practice solution for x^3+(2a+1)x^2+(a^2+2a-1)x(a^2-1)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^3+(2a+1)x^2+(a^2+2a-1)x(a^2-1)= equation:


Simplifying
x3 + (2a + 1) * x2 + (a2 + 2a + -1) * x(a2 + -1) = 0

Reorder the terms:
x3 + (1 + 2a) * x2 + (a2 + 2a + -1) * x(a2 + -1) = 0

Reorder the terms for easier multiplication:
x3 + x2(1 + 2a) + (a2 + 2a + -1) * x(a2 + -1) = 0
x3 + (1 * x2 + 2a * x2) + (a2 + 2a + -1) * x(a2 + -1) = 0

Reorder the terms:
x3 + (2ax2 + 1x2) + (a2 + 2a + -1) * x(a2 + -1) = 0
x3 + (2ax2 + 1x2) + (a2 + 2a + -1) * x(a2 + -1) = 0

Reorder the terms:
x3 + 2ax2 + 1x2 + (-1 + 2a + a2) * x(a2 + -1) = 0

Reorder the terms:
x3 + 2ax2 + 1x2 + (-1 + 2a + a2) * x(-1 + a2) = 0

Reorder the terms for easier multiplication:
x3 + 2ax2 + 1x2 + x(-1 + 2a + a2)(-1 + a2) = 0

Multiply (-1 + 2a + a2) * (-1 + a2)
x3 + 2ax2 + 1x2 + x(-1(-1 + a2) + 2a * (-1 + a2) + a2(-1 + a2)) = 0
x3 + 2ax2 + 1x2 + x((-1 * -1 + a2 * -1) + 2a * (-1 + a2) + a2(-1 + a2)) = 0
x3 + 2ax2 + 1x2 + x((1 + -1a2) + 2a * (-1 + a2) + a2(-1 + a2)) = 0
x3 + 2ax2 + 1x2 + x(1 + -1a2 + (-1 * 2a + a2 * 2a) + a2(-1 + a2)) = 0
x3 + 2ax2 + 1x2 + x(1 + -1a2 + (-2a + 2a3) + a2(-1 + a2)) = 0
x3 + 2ax2 + 1x2 + x(1 + -1a2 + -2a + 2a3 + (-1 * a2 + a2 * a2)) = 0
x3 + 2ax2 + 1x2 + x(1 + -1a2 + -2a + 2a3 + (-1a2 + a4)) = 0

Reorder the terms:
x3 + 2ax2 + 1x2 + x(1 + -2a + -1a2 + -1a2 + 2a3 + a4) = 0

Combine like terms: -1a2 + -1a2 = -2a2
x3 + 2ax2 + 1x2 + x(1 + -2a + -2a2 + 2a3 + a4) = 0
x3 + 2ax2 + 1x2 + (1 * x + -2a * x + -2a2 * x + 2a3 * x + a4 * x) = 0

Reorder the terms:
x3 + 2ax2 + 1x2 + (-2ax + -2a2x + 2a3x + a4x + 1x) = 0
x3 + 2ax2 + 1x2 + (-2ax + -2a2x + 2a3x + a4x + 1x) = 0

Reorder the terms:
-2ax + 2ax2 + -2a2x + 2a3x + a4x + 1x + 1x2 + x3 = 0

Solving
-2ax + 2ax2 + -2a2x + 2a3x + a4x + 1x + 1x2 + x3 = 0

Solving for variable 'a'.

Factor out the Greatest Common Factor (GCF), 'x'.
x(-2a + 2ax + -2a2 + 2a3 + a4 + 1 + x + x2) = 0

Subproblem 1

Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing a to the left, all other terms to the right. Add '-1x' to each side of the equation. x + -1x = 0 + -1x Remove the zero: 0 = -1x Simplifying 0 = -1x The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Subproblem 2

Set the factor '(-2a + 2ax + -2a2 + 2a3 + a4 + 1 + x + x2)' equal to zero and attempt to solve: Simplifying -2a + 2ax + -2a2 + 2a3 + a4 + 1 + x + x2 = 0 Reorder the terms: 1 + -2a + 2ax + -2a2 + 2a3 + a4 + x + x2 = 0 Solving 1 + -2a + 2ax + -2a2 + 2a3 + a4 + x + x2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 5(x-2)-8(x-1)=3x-10 | | 2-.44x=-6 | | 3sinx+4cosy=5 | | 3x(x-5)-9x=-30 | | 1/2(x/3+1)=x/4-2 | | (3x+2)(2x-6)=(4-3x)(1-2x)-1 | | 7-3y^2=5y | | z-2/5= | | z/5-2= | | .57w-4=16 | | 6x+46=8x-14 | | z-5/2= | | 14x/9-4/9=16/9 | | 14n/9+4/9= | | 4+91x=52x+28 | | 14n/9+4/9=16/9 | | x/5+1/4=3/20 | | 12+.75=-15 | | -(-4x-2y+5)= | | ln(x-2)+(2x+1)=5 | | 11+.75y=-15 | | (3b+4)(2b+7)= | | 7x+24=2x+56 | | (-14x^6-9x^5-12x^2)-(4x^4-14x^3+11)= | | 6x-30(x+12)=2(x-11) | | 0.2x=ln(x+5) | | 6x-2-7(2x-1)=0 | | 8x+3=6x+31 | | 7-2x=2x+7 | | Ab=ax+bx | | 5x+119=11x-7 | | x+5y-18=0 |

Equations solver categories